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Abstract. We consider the fundamental problem of Büchi acceptance in
timed automata in a robust setting. The problem is formalised in terms
of controller synthesis: timed automata are equipped with a parametrised
game-based semantics that models the possible perturbations of the
decisions taken by the controller. We characterise timed automata that
are robustly controllable for some parameter, with a simple graph theoretic
condition, by showing the equivalence with the existence of an aperiodic
lasso that satisfies the winning condition (aperiodicity was defined and
used earlier in different contexts to characterise convergence phenomena in
timed automata). We then show decidability and PSPACE-completeness
of our problem.

1 Introduction

Timed automata [AD94] are a timed extension of finite-state automata, provid-
ing an automata-theoretic framework to design, model, verify and synthesise
systems with timing constraints. However, the semantics of timed automata is
an idealisation of real timed systems; it assumes, for instance, perfect clocks for
arbitrarily precise time measures, and instantaneous actions. Thus, properties
proven on timed automata may not hold in a real implementation, and similarly,
a synthesised controller may not be realisable on a real hardware. This problem
has been addressed in several works in the literature, where the goal is to define
a convenient notion of robustness, so as to define a realistic semantics for timed
automata, and also make sure that the verified (or synthesised) behaviour remains
correct in presence of small perturbations.

In this work, we consider the fundamental problem of Büchi acceptance of
a given timed automaton in a robust setting. Our goal is to distinguish timed
automata where a Büchi condition can be satisfied even when the chosen delays
are systematically perturbed by an adversary by a bounded parametrised amount.
In fact, it has been observed that some timed automata require choosing time
delays with infinite precision in order to realise some behaviours. Apart from
well-known Zeno behaviours, [CHR02] shows such a convergence phenomenon
where an infinite run requires increasing precision at each step. These unrealisable
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behaviours are discarded in such an adversarial robust setting. Thus, we formalize
the problem in a game-theoretic setting. Our objective is to synthesise controllers
that are robust while discarding unrealisable behaviours.

More precisely, to define robustness, we equip timed automata with the
following game semantics between two players ([CHP11]): Controller with a
given Büchi objective, and Perturbator with the complementary objective. The
semantics is a turn-based game parametrised by δ > 0. At each step, Controller
chooses an edge, and d > δ, such that the guard of the edge is satisfied after any
delay d′ ∈ [d−δ, d+δ]. Then, the edge is taken after a delay d′ ∈ [d−δ, d+δ] chosen
by Perturbator. Timed games with parity conditions were studied in [CHP11]
for a fixed known parameter δ > 0, and for strictly positive delays with no lower
bound. In fact, in this case, one can encode this semantics as a usual timed
game, and rely on existing techniques for solving timed games. For an unknown
parameter δ > 0, the problem is more complicated, and was left as a challenging
open problem in [CHP11].

Our main result is the following: we show that deciding the existence of δ > 0,
and of a strategy for Controller in the perturbation game so as to ensure infinite
runs satisfying a given Büchi condition is PSPACE-complete, thus no harder
than in the exact setting [AD94]. We characterise robust timed automata, i.e.,
those in which Controller has a winning strategy, by showing that Controller can
win precisely when the timed automaton has an accepting aperiodic lasso. Aperi-
odicity [Sta12] is a variant of forgetfulness introduced in [BA11] in a different
context, to study the entropy of timed languages. Our characterisation confirms
the suggestion of [BA11] that this notion could be significant in the study of
robustness. Our results rely on the non-trivial combination of various techniques
used for studying timed automata: forgetful and aperiodic cycles as considered
in [BA11,Sta12], the metrics of [GHJ97], shrinking techniques [SBM11,BMS12]
and reachability relations of [Pur00]. Last, our proof provides a symbolic repre-
sentation of Controller’s strategy which could be amenable to implementation. A
full version of the paper is available in [SBMR13].

Related works. A similar game semantics was considered in [BMS12], but the
winning objectives considered are only reachability. An important consequence
is that convergence phenomena and unrealisable strategies are not an issue,
since one essentially only considers finite paths. In this paper, we thus need new
proof techniques to deal with convergence. In addition, the semantics considered
in [BMS12] is less restrictive for Controller: he only needs to suggest delays after
which the guard of the chosen edge is satisfied. Hence, the guard may not be
satisfied after a perturbation. The emphasis in the resulting semantics is therefore
on the newly appearing behaviours. Algorithmically, the semantics of [BMS12]
gives rise to more complex problems: reachability is already EXPTIME-complete,
whereas we are able to treat richer Büchi objectives in PSPACE in this paper.
From a designer’s perspective, we believe that both semantics are meaningful in
different modelling assumptions. The present semantics is interesting if lower and
upper bounds on events, e.g task execution times, appear naturally in the model,
and need be respected strictly. On the other hand, in other applications, the se-



mantics of [BMS12] allows to model with equality constraints, and then synthesise
controllers taking into account additional behaviour due to perturbations.

A related line of work is that of [Pur00,DDR05,DDMR08], which consists in
modeling imprecisions by enlarging all clock constraints of the automaton by
some parameter δ, that is, transforming each constraint of the form x ∈ [a, b]
into x ∈ [a− δ, b+ δ]. The dual notion of shrinking was considered in [SBM11] in
order to study whether any significant behaviour is lost when guards are shrunk.
Both approaches are interested in model-checking, and the robustness condition
is defined on the global behaviour of the enlarged or shrunk timed automaton.
This does not capture the system’s ability to adapt to perturbations that were
observed earlier in a given run. In contrast, the game semantics endows Controller
with a strategy against perturbations.

Among other robustness notions, [GHJ97] defines the tube semantics using
a topology on timed automata runs. Our semantics is not related as we have
a game semantics and a concrete parameter δ. However we use some results
from [GHJ97] in our proofs. [Mar11] surveys different robust semantics for timed
automata.

2 Timed Automata and Robust Safety

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a subset
R ⊆ C and a valuation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = ν(x)
for x ∈ C \R and ν[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation ν,
the valuation ν + d is defined by (ν + d)(x) = ν(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation ν satisfies a guard g, denoted ν |= g, if
all constraints are satisfied when each x ∈ C is replaced with ν(x). We write ΦC
for the set of guards built on C.

A timed automaton A is a tuple (L, C, `0, E), where L is a finite set of locations,
C is a finite set of clocks, E ⊆ L × ΦC × 2C × L is a set of edges, and `0 ∈ L is

the initial location. An edge e = (`, g, R, `′) is also written as `
g,R−−→ `′.

The set of possible behaviours of a timed automaton can be described by the set
of its runs, as follows. A run of A is a sequence q1e1q2e2 . . . where qi ∈ L × RC≥0,
and writing qi = (`, ν), either ei ∈ R>0, in which case qi+1 = (`, ν + ei), or
ei = (`, g, R, `′) ∈ E, in which case ν |= g and qi+1 = (`′, ν[R← 0]). We denote
by statei(ρ) the i-th state of any run ρ, by first(ρ) its first state, and, if ρ is finite,
last(ρ) denotes the last state of ρ.

In order to define perturbations, and to capture the reactivity of a controller
to these, we define the following robust game semantics, defined in [CHP11]
(see also [BMS12] for a variant). Intuitively, the robust semantics of a timed
automaton is a two-player game parametrised by δ > 0, where Player 1, also
called Controller chooses a delay d > δ and an edge whose guard is satisfied



after any delay in the set d + [−δ, δ]. Then, Player 2, also called Perturbator
chooses an actual delay d′ ∈ d + [−δ, δ] after which the edge is taken. Hence,
Controller is required to always suggest delays that satisfy the guards whatever
the perturbations are.

Formally, given a timed automaton A = (L, C, `0, E) and δ > 0, we define the
perturbation game of A w.r.t. δ as a two-player turn-based game Gδ(A) between
players Controller and Perturbator. The state space of Gδ(A) is partitioned into
VC ∪VP where VC = L×RC≥0 belong to Controller, and VP = L×RC≥0×R≥0×E
belong to Perturbator. The initial state is (`0,0) ∈ VC . The transitions are defined
as follows: from any state (`, ν) ∈ VC , there is a transition to (`, ν, d, e) ∈ VP
whenever d > δ, e = (`, g, R, `′) is an edge such that ν + d + ε |= g for all
ε ∈ [−δ, δ]. Then, from any such state (`, ν, d, e) ∈ VP , there is a transition to
(`′, (ν + d+ ε)[R← 0]) ∈ VC , for any ε ∈ [−δ, δ]. A pair of states of VC ∪ VP is
said to be consecutive if there is a transition between them. A play of Gδ(A) is
a finite or infinite sequence q1e1q2e2 . . . of states and transitions of Gδ(A), with
q1 = (`0,0), where ei is a transition from qi to qi+1. It is said to be maximal if
it is infinite or cannot be extended. A strategy for Controller is a function that
assigns to every non-maximal play ending in some (`, ν) ∈ VC , a pair (d, e) where
d > δ and e is an edge such that there is a transition from (`, ν) to (`, ν, d, e).
A strategy for Perturbator is a function that assigns, to every play ending in
(`, ν, d, e), a state (`′, ν′) such that there is a transition from the former to the
latter state. A play ρ is compatible with a strategy f if for every prefix ρ′ of ρ
ending in VC , the next transition along ρ after ρ′ is given by f . We define similarly
compatibility for Perturbator’s strategies. A play naturally gives rise to a unique
run, where the states are in VC , the delays are those chosen by Perturbator, and
the edges are chosen by Controller.

Given δ > 0, and a pair of strategies f, g, respectively for Controller and
Perturbator we let OutcomeδA(f, g) denote the unique maximal run that is com-
patible with both strategies. We also define OutcomeδA(f, ·) (resp. OutcomeδA(·, g))
as the set of all maximal runs compatible with f (resp. with g). A Büchi objective
is a subset of the locations of A. Controller’s strategy f is winning for a Büchi
objective B, if all runs of OutcomeδA(f, ·) are infinite and visit infinitely often
some location of B. The parametrised robust controller synthesis problem asks,
given a timed automaton A and a Büchi objective B, whether there exists δ > 0
such that Controller has a winning strategy in Gδ(A) for the objective B. Note
that these games are determined since for each δ > 0, the semantics is a timed
game.

Figure 1 shows examples of controllable and uncontrollable timed automata,
in our sense. The main result of this paper is the following.

Theorem 1. Parametrised robust controller synthesis is PSPACE-complete for
Büchi objectives.

The next section introduces several notions we need to state our main lemma
(Lemma 3), which characterises timed automata that are robustly controllable,
based on the nature of the lassos of the region automata.
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Fig. 1. On the left, a timed automaton from [Pur00] that is not robustly controllable for
the Büchi objective {`2}. In fact, Perturbator can enforce that the value of x be increased
by δ at each arrival at `1, thus blocking the run eventually. On the right, the timed
automaton (from [BA11]) is robustly controllable for the Büchi objective {`2}. In fact,
perturbations at a given transition do not affect the rest of the run; they are forgotten.

3 Regions, Orbit Graphs, Topology

Regions and Region Automata. We assume that the clocks are bounded above
by a known constant in all timed automata we consider. Fix a timed automa-
ton A = (L, C, `0, E). We define regions as in [AD94], as subsets of RC≥0. Any
region r is defined by fixing the integer parts of the clocks, and giving a parti-
tion X0, X1, . . . , Xm of the clocks, ordered according to their fractional values:
for any ν ∈ r, 0 = frac(ν(x0)) < frac(ν(x1)) < . . . < frac(ν(xm)) for any
x0 ∈ X0, . . . , xm ∈ Xm, and frac(ν(x)) = frac(ν(y)) for any x, y ∈ Xi. Here,
Xi 6= ∅ for all 1 ≤ i ≤ m but X0 might be empty. For any valuation ν, let [ν]
denote the region to which ν belongs.

We define the region automaton R(A) as a finite automaton whose states are

pairs (`, r) where ` ∈ L and r is a region. There is a transition (`, r)
∆−→ (`, s) if

there exist ν ∈ r, ν′ ∈ s and d > 0 such that ν′ = ν + d. There is a transition
(`, r)

e−→ (`′, s) where e = (`, g, R, `′) if r |= g and r[R ← 0] = s. We write the
paths of the region automaton as π = q1e1q2e2 . . . qn where each qi is a state,
and ei ∈ E ∪ {∆}, such that qi

ei−→ qi+1 for all 1 ≤ i ≤ n − 1. We also write
first(π) = q1, last(π) = qn, statei(π) = qi, and transi(π) = ei. The length of the
path is n, and is denoted by |π|. We denote the subpath of π between states
of indices i and j by πi...j . Given a run ρ of A, its projection on regions is the
path π in the region automaton s.t. statei(ρ) ∈ statei(π) for all 1 ≤ i ≤ n, and
either transi(ρ) = transi(π) or transi(π) = ∆ and transi(ρ) ∈ R≥0. In this case,

we write first(ρ)
π−→ last(ρ) (and say that ρ is along π). A lasso is a path π0π1

where π1 is a cycle, i.e. first(π1) = last(π1). A cycle of R(A) is a progress cycle if
it resets all clocks at least once [Pur00].

A region r is said to be non-punctual if it contains some ν ∈ r such that
ν + [−ε, ε] ⊆ r for some ε > 0. It is said punctual otherwise. By extension, we
say that (`, r) is non-punctual if r is. A path π = q1e1q2e2 . . . qn is non-punctual
if whenever ei = ∆, qi+1 is non-punctual.

Vertices and Orbit Graphs. A vertex of a region r is any point of r̄ ∩NC , where r̄
denotes the topological closure of r. For any region r, and any clock x, let us denote
by rx,0 the upper bound (by −r0,x the lower bound) on clock x inside region r.



Then, a vertex v of r is defined by the choice of an index 0 ≤ i ≤ m such that for
all x ∈ X1, . . . , Xi, we have v(x) = −r0,x and for all x ∈ Xi+1, . . . , Xm, we have
v(x) = rx,0. Hence, any region has at most |C|+ 1 vertices (See e.g. [DDMR08]).
We denote by inf(r) (resp. sup(r)) the vertex of r where all clocks are equal
to their lower bounds (resp. upper bounds). Let V(r) denote the set of vertices
of r. We also extend this definition to V((`, r)) = V(r). Note the following easy
properties of regions. Any region r has at most one vertex v ∈ V(r) such that
both v and v+1 belong to V(r). If these exist, then v = inf(r) and v+1 = sup(r).
Moreover, sup(r) = inf(r) + 1 if, and only if r is non-punctual. It has been shown
that all valuations in r are convex combinations of V(r) [Pur00].
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Fig. 2. The orbit graph of a (cyclic) path in the region automaton of the automaton of
Fig. 1(a).

Fig. 3. The folded orbit graph of
the (non-forgetful) cycle of Fig. 2.

Fig. 4. The folded orbit graph of a
forgetful cycle.

With any path π of the region automaton, we associate a |π|-partite labelled
graph γ(π) called the orbit graph of π [Pur00]. Intuitively, the orbit graph of a path
gives the reachability relation between the vertices of the regions visited along the
path. Formally, for a transition τ = q1e1q2, its orbit graph γ(τ) = (V1∪V2, fG, E)
is a bipartite graph where V1 = {(1, v)}v∈V(q1), and V2 = {(2, v)}v∈V(q2). For

any
(
(1, u), (2, v)

)
∈ V1 × V2, we have an edge ((1, u), (2, v)) ∈ E, if, and only if

u
ē1−→ v, where e1 = ∆ if e1 = ∆, and otherwise e1 is obtained by replacing

the guard by its closed counterpart. Note that each vertex has at least one
successor through e1 [AD94]. The labelling function fG maps each i to qi; we
also extend to nodes of G by fG((i, v)) = fG(i). In order to extend γ(·) to
paths, we use a composition operator ⊕ between orbit graphs, defined as follows.
If G = (V1 ∪ . . . ∪ Vn, fG, E) and G′ = (V ′1 ∪ . . . ∪ V ′m, fG′ , E′) denote two orbit
graphs, then G⊕G′ is defined if, and only if, fG(n) = fG′(1), that is, when the
path defining the former graph ends in the first state of the path defining the



latter graph. In this case, the graph G′′ = G⊕G′ = (V ′′1 ∪ . . . V ′′n+m−1, fG′′ , E
′′) is

defined by taking the disjoint union of G and G′, merging each node (n, v) of Vn
with the node (1, v) of V ′1 , and renaming any node (i, v) ∈ V ′i by (i+ n− 1, v),
so that we get a (n + m − 1)-partite graph. Formally, we let Vi = V ′′i for all
1 ≤ i ≤ n, and the subgraph of G′′ induced on these nodes is equal to G. For
any n+ 1 ≤ i ≤ n+m− 1, we have V ′′i = {(i, v)}(i−n+1,v)∈V ′i−n+1

, and there is

an edge
(
(i, v), (i + 1, w)

)
∈ E′′ if, and only if,

(
(i− n+ 1, v), (i− n,w)

)
∈ E′.

Now, we extend γ(·) to paths by induction, as follows. Consider any path
π = q1e1 . . . qn−1en−1qn, and let G = (V1 ∪ . . . ∪ Vn−1, fG, E) be the (n − 1)-
partite graph γ(q1e1 . . . qn−1), given by induction. Let G′ = (U ∪ U ′, fG′ , E′)
denote the bipartite graph of qn−1en−1qn. Then, we let γ(π) = G ⊕ G′. For
any node (i, v) of γ(π), let Succ((i, v)) denote the set of nodes (i + 1, w) with(
(i, v), (i + 1, w)

)
is an edge. We also extend Succ(·) to sets of nodes. Fig. 2

displays a path in the region automaton of the automaton depicted on Fig. 1(a)
together with its orbit graph. Note that delays of duration zero are allowed when
defining orbit graphs.

We define the folded orbit graph Γ (π) for any path π that is not a cycle, as
a bipartite graph on node set {1} × V(first(π)) ∪ {2} × V(last(π)). There is an
edge

(
(1, v), (2, w)

)
in Γ (π) if, and only if there is a path from (1, v) to (n,w)

in γ(π), where n = |π|. Nodes are labelled by the regions they belong to. For
any cycle π, we define Γ (π) similarly on the node set V(first(π)). Thus Γ (π) may
contain cycles; an example is given in Fig. 3. We extend the operator ⊕ to folded
orbit graphs. A strongly connected component (SCC) of a graph is initial if it is
not reachable from any other SCC.

A forgetful cycle of R(A) is a cycle whose folded orbit graph is strongly
connected. A cycle π is aperiodic if for all k ≥ 1, πk is forgetful. A lasso is said
to be aperiodic if its cycle is. Note that there exist forgetful cycles that are not
aperiodic [Sta12].

An example of a non-forgetful cycle is given in Fig. 3. The timed automaton
of Fig. 1(b) contains a forgetful cycle, shown on Fig. 4.

Some Linear Algebra. For any set of vectors, we denote by Span(B) the linear
span of B, i.e. the set of linear combinations of B. In the proofs, we will often
use the vertices of a region to define a basis of a vector space that contains the
region.

Lemma 2. Let r be any region, and let v0 = inf(r). The set of vectors Bv0 =
{v − inf(r)}v∈V(r)\{v0} is linearly independent. Moreover, the affine space v0 +
Span(Bv0) contains r.

Let the dimension of a subset r ⊆ RC be the least d such that a affine subspace
of RC of dimension d contains r. It follows immediately from Lemma 2 that in
any region where the partition of the clocks according to their fractional values
is written as X0, X1, . . . , Xm, has dimension m since it has m+ 1 vertices.

We will consider the usual d∞ metric on RC , defined as d∞(ν, ν′) =
maxx∈C |ν(x)− ν′(x)|. We denote open balls in this metric by Balld∞(ν, ε).



4 Main Lemma and Algorithm

Our main result is based on the following lemma, which gives a characterization
of robust timed automata using aperiodic lassos of region automata.

Lemma 3 (Main Lemma). For any timed automaton A and Büchi objective B,
there exists δ > 0 such that Controller has a winning strategy in Gδ(A) for
objective B, if, and only if R(A) has a reachable aperiodic non-punctual B-
winning lasso.

The algorithm for deciding robust Büchi acceptance follows from Lemma 3. It
consists in looking for aperiodic non-punctual B-winning lassos in R(A). These
lassos need not be simple, but the following lemma bounds their lengths.

Lemma 4. Let B be a Büchi objective in a timed automaton A, and π be an
aperiodic non-punctual B-winning cycle of R(A). Then, there exists a cycle π′

with the same properties, with length at most N = 2(|C|+1)2+1 × |R(A)|.

The polynomial-space algorithm then consists in guessing an accepting lasso
of exponential size in R(A) on-the-fly, and checking whether its folded orbit
graph is aperiodic. The folded orbit graph can also be computed on-the-fly, and
aperiodicity can be checked in PSPACE [Sta12]. See Appendix for more details.

The two directions of the main lemma are proved using different techniques;
they are presented respectively in Sections 5 and 6. Our results also establish
that winning strategies can be represented by regions with a given granularity,
depending on δ. An algorithm is described at the end of Section 6 to actually
compute the bound δ and a description of the winning strategy for Controller.

5 No Aperiodic Lassos Implies No Robustness

In this section, we prove that Controller loses if there is no aperiodic winning
lassos. The idea is that if no accepting lasso of R(A) is aperiodic, then, as
we show, the projection of any play to R(A) eventually enters and stays in a
non-forgetful cycle. Then, we choose an appropriate Lyapunov function LI(·)
defined on valuations and taking nonnegative values, and describe a strategy
for Perturbator such that the value of LI(·) is decreased by at least ε at each
iteration of the cycle. Hence, Controller cannot cycle infinitely on such cycles:
either it reaches a deadlock, or it cycles on non-accepting lassos. In the rest of
this section, we describe Perturbator’s strategy, study its outcomes, choose a
function LI(·), and prove the first direction of the main lemma.

Our proof is based on several results. First, we consider a result from
Puri [Pur00](Lemma 5) on reachability relations between valuations in timed
automata, and establish non-trivial properties on it valid along non-punctual
paths. We then study the folded orbit graphs of non-punctual progress cycles,
and use original proof techniques (e.g. using the dimension of sets) to understand
the form of these graphs. This allows us to consider the Lyapunov functions
of [BA11] in this context, and prove our results as described above.



5.1 Reachability Relations

We already noted that any valuation ν can be written as the convex combination
of the vertices of its region, i.e. ν =

∑
v∈V([ν]) λvv for some unique coefficients

λv ≥ 0 with
∑
v λv = 1. When the region is clear from context, we will simply

write ν = λv. Given a path π and a vertex v of the region of first(π), let us
denote by RΓ (π)(v) the set of nodes w ∈ V(last(π)) such that (v, w) ∈ E(Γ (π)).
Thus, this is the “image” of v by the path π. Puri showed in [Pur00] that the
reachability along paths can be characterized using orbit graphs.

Lemma 5 ([Pur00]). Let π be a path from region r to s. Consider any ν ∈ r
with ν =

∑
v∈V(r) λvv for some coefficients λv ≥ 0 and

∑
λv = 1. If ν

π−→ ν′,

then for each v ∈ V(r), there exists a probability distribution {pν,ν′v,w }w∈RΓ (π)(v)

over RΓ (π)(v) such that ν′ =
∑
v∈V(r) λv

∑
w∈RΓ (π)(v) p

ν,ν′

v,ww. Conversely, if there

exist probability distributions pν,ν
′

v,w satisfying above equalities, then ν
π̄−→ ν′.

Intuitively, the lemma shows that any successor of a point ν =
∑
i λivi can be

obtained by distributing the weight λi of each vertex vi to its successors following
a probability distribution.

Example 1. The automaton of Fig. 1(a) contains a cycle on the region r = J1 <
x, y < 2 ∧ 0 < x − y < 1K. The vertices of r are v1 = (1, 1), v2 = (2, 1), v3 =
(2, 2). Consider a point ν = 1

3v1 + 1
3v2 + 1

3v3. Then, Lemma 5 says that ν′ =∑
1≤i≤3 λivi is reachable from ν along the cycle, where λ1 = 1

30.5 + 1
30.4 = 9

30 ,

λ2 = 1
31 + 1

30.3 = 13
30 , and λ3 = 1

30.6 + 1
30.2 = 4

15 . Here, vertex set {v1, v3} is an
initial SCC I. One can check that LI is indeed decreasing: 1

3 + 1
3 ≥

9
30 + 4

15 .

For any region r, and any subset I ⊆ V(r), we define the function LI : r̄ → R≥0

as, LI(ν) =
∑
v∈I λv, where ν = λv. It is shown in [BA11] that given any

cycle π, if I is chosen as the initial strongly connected component of Γ (π),

then for any run ν
π−→ ν′, LI(ν

′) ≤ LI(ν). We will abusively use LI(·) for a
subset I of nodes of γ(π) or Γ (π), that correspond to a same region. Notice that
0 ≤ LI(·) ≤ 1.

5.2 A global strategy for Perturbator

Let us call a valuation v ε-far if v + [−ε, ε] ⊆ [v]. A run is ε-far if all delays end
in ε-far valuations. We show that Perturbator has a strategy ensuring ε-far runs.

Lemma 6. Given any δ > 0, and any timed automaton with C clocks, there
exists a strategy σP

δ,+ (resp. σP
δ,−) for Perturbator that always perturbs by a

positive (resp. negative) amount, and whose all outcomes are δ
2(C+1) -far, and all

delays are at least δ
2(C+1) .

Proof. After any delay ν
d−→ ν′, d ≥ δ, chosen by Controller, consider the regions

spanned by the set ν′ + [0, δ]. It is easy to see that this set intersects at most



|C|+ 1 different regions (See also [BMS12, Lemma 6]), all of which must satisfy
the guard by definition of the game. So some region r satisfies ν′ + [α, β] ⊆ r, for
some 0 ≤ α < β ≤ δ with β − α ≥ δ

|C|+1 . The strategy σP
δ,+ consists in choosing

the perturbation as 1
2 (β−α). This guarantees time progress (of at least δ

2(|C|+1) ).

Moreover, the resulting valuation is always ε-far in its region, where ε = δ
2(|C|+1) .

Observe also that all perturbations prescribed by this strategy are positive. The
strategy σP

δ,− is constructed similarly by considering the valuations ν′ + [−δ, 0].

It turns out that in order to win, Perturbator only needs to ensure ε-far runs,
hence either of the strategies defined above is sufficient to win. In the rest, let us
fix a strategy σP

δ as σP
δ,+ or σP

δ,−. In order to prove that ε-far runs are winning

for Perturbator, we study the properties of the runs OutcomeδA(·, σP
δ ). We prove

Propositions 7 and 8 which are a key element of the proof.
Using the ε-far property of the runs, the following proposition derives a bound

on the convex combination coefficients of all visited valuations.

Proposition 7. Let ρ ∈ OutcomeA(·, σP
δ ). For any i ≥ 1, if we write statei(ρ) =

λv, then λv ≥ ε for all vertices v ∈ V([statei(ρ)]).

r

ν
inf(s)

sup(s)

s

ν′

D

Intuitively, a lower bound on the convex coeffi-
cients means that the valuation is not close to the
borders of the region. We sketch the proof which is
by induction. The property is true initially since the
region 0 has a single vertex. For the induction case,
let us mention the easy case of resets. Clock resets
map each vertex to a single vertex, so each vertex
has a single successor in the orbit graph. Then, it
follows from Lemma 5 that the coefficient of each
vertex in the target region is at least as large as its
predecessor in the source region. For the case of time
delays, one needs to consider the geometry of regions. The figure on the right
shows the intuition in two dimensions. Given an ε-far delay from ν to ν′, with
[ν] = r, and [ν′] = s, one shows that the coefficients of inf(s) and sup(s) cannot
be too small; otherwise the line D that connects ν′ to the third vertex would be
close to vertical or to horizontal, requiring ν′ to be close to a border of s.

We need another property of similar spirit stating that all edges of the folded
orbit graph receive a probability of at least min( 1

2 ,
ε
2 ) along ε-far delays, according

to the interpretation of Lemma 5. The proof is rather involved, and establishes
that there is some degree of freedom in the choice of the probabilities of Lemma 5.

Proposition 8. Let ν = λv and ν′ = λ′v′ denote two valuations satisfying
λ,λ′ ≥ ε, and s.t. (`, ν)

π−→ (`, ν′) is an ε-far delay of duration at least ε. Then,
for each v ∈ V([ν]), there exists a probability distribution {pv,w}w∈RΓ (π)(v) over

RΓ (π)(v) s.t. ν′ =
∑
v∈V(r) λv

∑
w∈RΓ (π)(v) pv,ww, and pv,w ≥ min( 1

2 ,
ε
2 ).



5.3 Decreasing Lyapunov function

In the previous subsection, we established lower bounds on the convex coefficients
of the visited valuations, and the probabilities of Lemma 5. We use this property
to find a Lyapunov function that strictly decreases at each iteration of a cycle.

In this subsection, we concentrate on progress cycles. In fact, in the proof of
Lemma 3, we will show that if Controller is able to win against σP

δ , then some
cycle of R(A) must be repeated infinitely often. But since σP

δ always ensures a
time progress of δ

2(|C|+1) (see Lemma 6), and because all clocks are bounded, this

is only possible in a progress cycle.
The following lemma shows that along non-punctual progress cycles, runs can

reach any valuation in a ball around the target state. This gives the dimension
of the set of valuations reachable along a progress cycle starting from a given
valuation. The proof is somewhat similar to [DDMR08, Lemma 29].

Lemma 9. Let π be a non-punctual progress cycle, and (`, ν)
π−→ (`, ν′) a run

along π. Then, there exists ε > 0 such that there exists a run from (`, ν), along π,
to any point in {`} × (Balld∞(ν′, ε) ∩ [ν′]).

We now prove that the folded orbit graphs of non-punctual progress cycles are
always connected. If the cycle is non-forgetful, there are at least two connected
SCCs (Corollary 11). The lemma is proved by contradiction: we show that if
the graph has disjoint components, then the set of states reachable from a given
state cannot have full dimension, which contradicts Lemma 9.

Lemma 10. The folded orbit graph of a non-punctual progress cycle is connected.

Corollary 11. The folded orbit graph of a non-punctual non-forgetful progress
cycle π contains at least two strongly connected components that are connected.
We associate with each π an initial SCC of Γ (π), which we denote by I(π).

Hence, for any non-punctual non-forgetful cycle π, we consider the function
LI(π). The following lemma shows a key property for the proof: LI(π) decreases by

a fixed amount at each iteration of such a cycle under Perturbator’s strategy σP
δ .

Lemma 12. Let ω ∈ OutcomeδA(·, σP
δ ), and ρ be a finite prefix of ω such that π,

the projection of ρ to regions, is a cycle. If π is a non-forgetful progress cycle, then,
writing first(ρ) = λv and last(ρ) = λ′v′, we have,

∑
i∈I(π) λ

′
i ≤

∑
i∈I(π) λi−ε2/2.

The proof shows that any such run has a transition in which some edge of the
folded orbit graph has a successor to a node that is not coreachable from I(π).
The existence of such an edge is proved using Corollary 11. By Propositions 7
and 8, we know that the convex combination coefficient associated to the node is
at least ε, and the probability associated to the edge leaving it is at least ε/2.
One then shows that at least ε2/2 is lost from Lπ at each iteration.

The previous lemma already gives an insight into the proof, since it follows that
no non-forgetful cycle can be repeated infinitely under strategy σP

δ . However, one
also needs to show that switching between different cycles cannot help Controller
win. Thus, the last tool we need for the proof is the following factorization theorem,
which allows factoring paths to cycles with the same folded orbit graphs.



Lemma 13. Let π be a path of R(A) written as π = π0π1π2 . . . πn where each
πi is a cycle that starts in the same state, for i ≥ 1. Then, one can write
π = π′0π

′
1π
′
2 . . . π

′
m+1 such that m ≥

√
n/r − 2 − 1, where r = 2(|C|+1)2 |R(A)|,

and for some indices 0 = α0 < α1 < . . ., we have π′i = παi · . . . · παi+1−1 for
each i ≥ 0, and Γ (π′1) = Γ (π′i) for all 1 ≤ i ≤ m.

Proof: No winning aperiodic lassos implies no robust safety. To get a
contradiction, fix any winning strategy σ for Controller and let ρ be the infinite
run OutcomeδA(σ, σP

δ ), and π its projection on regions. By definition of σP
δ , π is a

non-punctual path. Let us write π = π0π1 . . . πn . . . such that all πi, i ≥ 1, are
accepting cycles from a same state. Let r = 2(|C|+1)2×|R(A)|, n = d2/ε2e+1 and

N large enough so that d
√
N/r − 2e − 1 ≥ n2(|C|+1)2 . We extract π′ the prefix

of π with N factors, and apply Lemma 13 which yields π′ = π′0π
′
1 . . . π

′
n′π
′
n′+1,

with n′ = n2(|C|+1)2 , where Γ (π′1) = . . . = Γ (π′n′), and π′i are obtained by
concatenating one or several consecutive πi. By hypothesis, some power k of π′i is

non-forgetful, with k ≤ 2(|C|+1)2 since this is the number of folded orbit graphs for
a fixed labelling function. But since the folded orbit graphs are the same for all π′i,

this power is the same for all factors, and Γ (π′i
k
) = Γ (π′iπ

′
i+1 . . . π

′
i+k−1). Hence,

we can factorize π′ again into π′ = π′0π
′′
1π
′′
2 . . . π

′′
nπ
′′
n+1, where Γ (π′′1 ) = . . . =

Γ (π′′n) and all are non-forgetful; while π′0 and π′′n+1 are arbitrary non-punctual
paths. Moreover, π′′i , for 1 ≤ i ≤ n, must be progress cycles too. In fact, otherwise
there is some clock x ∈ C that is never reset along π′. But because σP

δ ensures a
time progress of ε at each delay, this means that π′ contains delays of duration
at least nε2/2 > 1, so we cannot have first(π′1) = last(π′n) since the integer part
of the clock x changes, and so does the region since all clocks are assumed to
be bounded. Now, we have I(π′′i ) = I(π′′j ) for any 1 ≤ i, j ≤ n, so the functions
LI(π′′i ) are the same for all 1 ≤ i ≤ n. If we write ρi the state reached in ρ following

π′0π
′′
1 . . . π

′′
i , then we get, by Lemma 12, LI(π′′1 )(ρn) ≤ LI(π′′1 )(ρ0)− nε2/2. This

is a contradiction since 0 ≤ LI(π′1) ≤ 1 and nε2/2 > 1.

6 Aperiodic Lassos Implies Robustness

We now prove that if R(A) contains an aperiodic non-punctual B-winning lasso,
then there exists δ > 0 and a strategy for Controller in Gδ(A) ensuring robust
safety. The idea of the proof is to observe that aperiodic cycles do not constrain
runs in the way non-forgetful ones do, and show that this is still the case in the
perturbation game semantics. More precisely, along an aperiodic lasso, Controller
is able to always come back in a set at the middle of the starting region.

6.1 Zones and Shrunk Zones

A zone is a subset of RC≥0 defined by a guard. A difference-bound matrix (DBM)
is a |C0| × |C0|-matrix over (R × {<,≤}) ∪ {(∞, <)}. We adopt the following
notation: for any DBM M , we write M = (M,≺M ), where M is the matrix made
of the first components, with elements in R∪{∞}, while ≺M is the matrix of the



second components, with elements in {<,≤}. A DBM M naturally represents a
zone (which we abusively write M as well), defined as the set of valuations v such
that, for all x, y ∈ C0, it holds v(x)− v(y) ≺Mx,y Mx,y (where v(0) = 0). Standard
operations used to explore the state space of timed automata have been defined
on DBMs: intersection is written M ∩N , Pre (M) is the set of time predecessors
of M , UnresetR(M) is the set of valuations that end in M when the clocks in R
are reset. We also consider Pre>δ(M), the set of time predecessors with a delay
of more than δ. DBMs were introduced in [BM83,Dil90] for analyzing timed
automata; we refer to [BY04] for details.

A parametrised extension, namely shrunk DBMs were introduced in [SBM11]
in order to study the parametrised state space of timed automata. Intuitively, our
goal is to express shrinkings of guards, e.g. sets of states satisfying constraints
of the form g = 1 + δ < x < 2 − δ ∧ 2δ < y, where δ is a parameter to be
chosen. Formally, a shrunk DBM is a pair (M,P ), where M is a DBM, and
P is a nonnegative integer matrix called a shrinking matrix (SM). This pair
represents the set of valuations defined by the DBM M − δP , for any given δ > 0.
Considering the example g, M is the guard g obtained by setting δ = 0, and P
is made of the integer multipliers of δ.

We adopt the following notation: when we write a statement involving a
shrunk DBM (M,P ), we mean that for some δ0 > 0, the statement holds for
(M − δP ) for all δ ∈ [0, δ0]. For instance, (M,P ) = Pre>δ((N,Q)) means that
M − δP = Pre>δ(N − δQ) for all small enough δ > 0. Additional operations are
defined for shrunk DBMs: for any (M,P ), we define shrink[−δ,δ]((M,P )) as the
set of valuations ν such that ν + [−δ, δ] ⊆M − δP , for small enough δ > 0.

Shrunk DBMs are closed under standard operations on zones:

Lemma 14 ([SBM11,BMS12]). Let M = f(N1, . . . , Nk) be an equation be-
tween normalized DBMs M,N1, . . . , Nk, using the operators Pre>δ, UnresetR, ∩,
and shrink[−δ,δ], and let P1, . . . , Pk be SMs. Then, there exists a shrunk DBM

(M ′, Q) with M′ = M, M ⊆ M ′ and (M ′, Q) = f
(
(N1, P1), . . . , (Nk, Pk)

)
. The

shrunk DBM (M ′, Q) and an upper bound on δ can be computed in poly-time.

6.2 Controllable Predecessors

Consider an edge e = (`, g, R, `′). For any set Z ⊆ RC≥0, we define the controllable

predecessors of Z as follows: CPreδe(Z) = Pre>δ(shrink[−δ,δ](g ∩ UnresetR(Z))).

Intuitively, CPreδe(Z) is the set of valuations from which Controller can ensure
reaching Z in one step, following the edge e. In fact, it can delay in shrink[−δ,δ](g∩
UnresetR(Z)) with a delay of more than δ, where under any perturbation in [−δ, δ],
the valuation satisfies the guard, and it ends, after reset, in Z. We extend this
operator to paths as expected. Note that CPre0

e is the usual predecessor operator
without perturbation: If N = CPre0

π(M) for some sets N,M and path π, then,
N is the set of all valuations that can reach some valuation in M following π.

It immediately follows from Lemma 14 that the controllable predecessors of
shrunk DBMs are shrunk DBMs, which are computable.



Corollary 15. Let e = (`, g, R, `′) be an edge. Let M and N be non-empty
DBMs such that N = CPre0

e(M). Then, for any SM P , there exists an SM Q
such that (N ′, Q) = CPreδe((M,P )) for some N ⊆ N ′ and N = N′.

The set (N ′, Q) given by the previous lemma can be empty in general. However,
as the following lemma shows, it turns out that in the case of non-punctual paths,
controllable predecessors of open sets are non-empty, for small enough δ > 0.

Lemma 16. Let π be a non-punctual path from region r to s. Let s′ ⊆ s such
that there exists ν′ ∈ s′ and ε > 0 with Balld∞(ν′, ε) ∩ s ⊆ s′. Then, CPreδπ(s′) is
non-empty for small enough δ > 0.

6.3 Winning Under Perturbations

Let π0π denote a non-punctual aperiodic lasso, where π is the cycle; Γ (πn) is
strongly connected for n ≥ 1. We prove that the graph of some power is complete:

Lemma 17. Let π be an aperiodic cycle. Then, there exists n ≤ |C0| · |C0|! such
that Γ (πn) is a complete graph.

Let us assume, by the previous lemma, that Γ (π) is a complete graph (one can
consider the lasso π0π

n for an appropriate n). Let s be a region with smaller
granularity inside r, obtained so that the Hausdorff distance between r and s
is positive. In this case, s can be chosen so that it can be expressed by a DBM
(with rational components). The construction is defined in the following lemma.

Lemma 18. For any non-empty DBM M , there exists a non-empty DBM N
such that Balld∞(ν, ε)∩M ⊆ N for some ν ∈M , and for any shrinking matrix P
with (M,P ) 6= ∅, N ⊆ (M,P ). Moreover, N is computable in polynomial time.

The last element we need for our proof is an observation from [BA11]: If π is
a cycle of R(A) such that Γ (π) is a complete graph, then for all (`, ν), (`, ν′) ∈
first(π), there is a run (`, ν)

π−→ (`, ν′), hence the reachability relation is complete.

Proof: Winning aperiodic lassos implies robust safety. We write r =
first(π). Let s ⊆ r given by Lemma 18 applied to r. Because Γ (π) is complete,
we have, by previous remark r = CPre0

π(s). By Lemma 15, there exists a SM Q
such that (r,Q) = CPreδπ(s). By Lemma 16, (r,Q) is non-empty. By definition
of s, for small enough δ > 0, s ⊆ (r,Q), so Controller has a strategy to always
move inside s, at each iteration of π. Similarly, CPreδπ0

((r,Q)) is also non-empty
and therefore contains the initial state. Hence, Controller wins.

Now, to actually compute δ and a winning strategy in exponential time, given
an aperiodic lasso, one iterates the cycle so as to obtain a complete folded orbit
graph (Lemma 17), then picks a subset s as in Lemma 18, and uses Corollary 15
to compute the controllable predecessors of s. This also provides the greatest δ
under which the strategy along given lasso is valid.



7 Future works

We intend to investigate possible extensions of this work to timed games, where
Perturbator entirely determines the move in some locations. This could require
generalizing the notion of aperiodicity from paths to trees since Controller can no
more ensure to follow a given path. Another interesting future work is studying
infinite runs in the semantics of [BMS12].
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