Language inclusion for Büchi automata

The problem

Given two non-deterministic Büchi automata (NBA) A, B, does it hold that

$$L(A) \subseteq L(B)?$$

L.I. in model-checking

- LTL model-checking
- regular model-checking
- size-change termination analysis
- ...

A hard problem

- PSPACE-complete
- already for trace inclusion (for two LTS)
- sometimes even undecidable (e.g. TA)
Recent advances on language inclusion

- antichain algorithms [Doyen et al]
- bisimulation up to techniques [Bonchi and Pous]
- Ramsey or antichain algorithms enhanced with simulation preorder [Holik et al]
- automata minimization
 - using SAT solving [Ehlers]
 - quotienting, pruning [Clemente and Mayr]
- http://www.languageinclusion.ord

Our goal: design better simulations ⇒ get better algorithms
Simulations step by step

Why simulation matters

- under-approximates language inclusion
- can be used for automata minimization
- computing simulation is typically fast
 in time $O(|A| \cdot |B|)$ for two NFA A, B

Looking for better simulations

- delayed simulation [Etessami, Wilke, and Schuller]
 \Rightarrow NBA quotient is language equivalent
- multi-pebble simulation [Etessami]
 \Rightarrow better approximates language inclusion
- multi-letter simulation
 [Clemente and Mayr] [Hutagalung et al]
 \Rightarrow sometimes faster than multi-pebble
Fair simulation

two players, infinite game

- Spoiler moves a pebble in A, Duplicator in B

- in every round:
 1. Spoiler chooses a letter a
 2. Spoiler moves his pebble along an a transition
 3. Duplicator moves her pebble along an a transition

- if a player gets stuck, he/she loses
- otherwise, two infinite runs

Fairness condition: Duplicator wins if
 - either her run is accepting,
 - or Spoiler’s one is not.
two players, infinite game

- Spoiler moves a pebble in A, Duplicator in B
- in every round:
 1. Spoiler chooses k letters a_1, \ldots, a_k
 2. Spoiler moves his pebble along transitions $a_1, \ldots a_k$
 3. Duplicator moves her pebble along transitions $a_1, \ldots a_k$

- if a player gets stuck, he/she looses
- otherwise, two infinite runs
- Fairness condition: Duplicator wins if
 - either her run is accepting,
 - or Spoiler’s one is not.
Example

- \((A) \subseteq L(B)\) but \(A\) is not simulated by \(B\)
- \(A\) is 2-letters simulated by \(B\)
k-letters simulations in practice

- cheap to compute for small k
- on most benchmarks, significantly better than 1-letter simulation (up to 100 times faster than Rabit v1.0)

- untractable for large k
- Duplicator looses in “easy cases”
Example

- $L(A) \subseteq L(B)$
- A is not k-letters simulated by B, for any k.
Introducing continuous simulation

players now share a FIFO buffer
in every round:

1. Spoiler chooses $a \in \Sigma$, and adds it to the buffer
2. Spoiler moves his pebble along an a transition
3. Duplicator can decide to
 - either skip her turn
 - or pop b from the buffer, and move along a b transition
Introducing continuous simulation

players now share a FIFO buffer in every round:

1. Spoiler chooses $a \in \Sigma$, and adds it to the buffer
2. Spoiler moves his pebble along an a transition
3. Duplicator can decide to
 - either skip her turn
 - or pop b from the buffer, and move along a b transition

Winning condition

- if a player gets stuck, he/she looses
- if Spoiler makes no accepting run, he looses
otherwise,
- if Duplicator eventually only skips her turn, she looses
- otherwise, apply fairness condition on the two infinite runs
Example

Winning strategy for Duplicator:
- skip her first turn
- at round i, play Spoiler’s letter in round $i - 1$
Fairness and buffer boundedness

- Spoiler must eventually leave the a loop
- Duplicator wins
- Buffer can grow arbitrarily large
Continuous simulation and continuity

- \(\text{ARuns}(A) \): the set of accepting runs of \(A \)
- \(\text{ARuns}(A) \) is a metric space
- \(f : \text{ARuns}(A) \rightarrow \text{ARuns}(B) \) is \textit{word preserving} if \(f(\rho) \) and \(\rho \) are runs over the same infinite word.

Theorem

1. \(L(A) \subseteq L(B) \) iff there is a word preserving \(f : \text{ARuns}(A) \rightarrow \text{ARuns}(B) \)
2. \(B \) cont. simulates \(A \) iff there is a \textit{continuous} word preserving \(f : \text{ARuns}(A) \rightarrow \text{ARuns}(B) \)
Consequences

- continuous simulation is a transitive relation
 - continuity is preserved by function composition

- continuous simulation is decidable in 2-EXPTIME
 - follows from [Holtmann, Kaiser and Thomas, FSTTCS 2010]

- on LTS (without fairness), the buffer can be bounded
 - for a LTS S, traces(S) is a compact space
 - on such spaces, continuous functions \equiv Lipschitz functions
 - Lipschitz function \equiv buffer boundedness
Exact complexity

Theorem

Continuous simulation is EXPTIME-complete.

Decidability

- $w \sim_A w'$ if w, w' have the same “transition profile”
- $3|A|^2$ equivalence classes
- cannot abstract buffer exact content by equiv class ...
- first introduce an equivalent game with “lassos”
- end with parity game of exponential size and index 3.
EXPTIME-hardness

Tiling game

- a set of tiles, among which one called “target”
- on every round
 - Starter chooses the first tile in the row

\[n=4 \]
EXPTIME-hardness

Tiling game

- a set of tiles, among which one called “target”
- on every round
 - Starter chooses the first tile in the row
 - Completer chooses the \(n - 1 \) other tiles of the row
EXPTIME-hardness

Tiling game

- a set of tiles, among which one called “target”
- on every round
 - Starter chooses the first tile in the row
 - Completer chooses the $n - 1$ other tiles of the row

$n=4$
EXPTIME-hardness

Tiling game

- a set of tiles, among which one called “target”
- on every round
 - Starter chooses the first tile in the row
 - Completer chooses the $n-1$ other tiles of the row

$n=4$
EXPTIME-hardness

Tiling game

- a set of tiles, among which one called “target”
- on every round
 - Starter chooses the first tile in the row
 - Completer chooses the \(n - 1 \) other tiles of the row

Completer wins if she eventually puts the target tile.
EXPTIME-hardness (2)

Given a tiling game G, define A_G and B_G such that

Starter wins G iff Duplicator wins $\text{contsim}(A_G, B_g)$.

- alphabet = set of tiles + \{0, 1\}
- Spoiler is forced to play a word of the form

 \[
 0 \quad 1 \quad 1 \quad \ldots \quad 1 \quad 0 \quad 0 \quad \ldots
 \]

- Duplicator forces Spoiler’s first tile by its position
- Spoiler forces Duplicator to play by repeating a row
Look-ahead simulation

in every round:

1. Spoiler chooses $a \in \Sigma$, and adds it to the buffer
2. Spoiler moves his pebble along an a transition
3. Duplicator can decide to
 - either skip her turn
 - or flush the entire buffer, get a_1, \ldots, a_k, and move along a_1, \ldots, a_k transitions
4. winning condition as before
Examples

Duplicator wins

Spoiler wins
PSPACE hardness

Theorem

Look-ahead fair simulation is PSPACE hard.

Proof:

- reducing from language inclusion for NFA
- for an NFA \(A\), define \(A'\) such that \(L(A') = L(A)\).\(
\#^\infty\) adding an extra state
- then \(L(A) \subseteq L(B)\) iff \(B'\) fairly simulates \(A'\) with look-ahead
Theorem

Look-ahead fair simulation is PSPACE hard.

Proof:
- reducing from language inclusion for NFA
- for an NFA A, define A' such that $L(A') = L(A)$. $\#^\omega$ adding an extra state
- then $L(A) \subseteq L(B)$ iff B' fairly simulates A' with look-ahead

Theorem

Look-ahead unfair simulation is PSPACE hard.

Proof: more involved, again reducing from a tiling problem.
PSPACE upper bound

Theorem
Look-ahead fair simulation is in PSPACE.

Proof:
- define quotient game along the same lines as before
- still get parity game G of exponential size
- however, only $O(|A| \cdot |B|)$ positions for Spoiler in G
- solve the game without generating it entirely
A word on automata minimization

Other winning condition

- fair simulation is not good for quotienting
- delayed simulation is [Etessami, Wilke, and Schuller]
- direct simulation is good for pruning

Same holds for continuous/look-ahead counterparts.

Look-ahead simulation is not transitive

- counter-example for multi-letters due to Clemente and Mayr
- carry over look-ahead simulations
- consequence: quotienting is not idempotent, can be repeated
Conclusion

Contribution

- we introduced two new simulations
- we established their decidability and exact complexity
- continuous simulation is mathematically appealing

Perspectives

- high complexities \Rightarrow probably not suitable for NBA
- interesting for timed automata?